J un 2 00 3 Picard groups in Poisson geometry

نویسندگان

  • Henrique Bursztyn
  • Alan Weinstein
چکیده

We study isomorphism classes of symplectic dual pairs P ← S → P , where P is an integrable Poisson manifold, S is symplectic, and the two maps are complete, surjective Poisson submersions with connected and simply-connected fibres. For fixed P , these Morita self-equivalences of P form a group Pic(P ) under a natural “tensor product” operation. Variants of this construction are also studied, for rings (the origin of the notion of Picard group), Lie groupoids, and symplectic groupoids. DEDICATED TO PIERRE CARTIER

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

3 A pr 2 00 3 Picard groups in Poisson geometry

We study isomorphism classes of symplectic dual pairs P ← S → P , where P is an integrable Poisson manifold, S is symplectic, and the two maps are complete, surjective Poisson submersions with connected and simply-connected fibres. For fixed P , these Morita self-equivalences of P form a group Pic(P ) under a natural “tensor product” operation. Variants of this construction are also studied, fo...

متن کامل

un 2 00 2 Modules of Abelian integrals and Picard - Fuchs systems

We give a simple proof of an isomorphism between two C[t]-modules corresponding to bivariate polynomial H with nondegenerate highest homogeneous part: the module of relative cohomologies Λ 2 /dH ∧ Λ 1 and the module of Abelian integrals. Using this isomorphism, we prove existence and deduce some properties of the corresponding Picard-Fuchs system.

متن کامل

Picard Groups in Poisson Geometry

We study isomorphism classes of symplectic dual pairs P ← S → P , where P is an integrable Poisson manifold, S is symplectic, and the two maps are complete, surjective Poisson submersions with connected and simply-connected fibres. For fixed P , these Morita self-equivalences of P form a group Pic(P ) under a natural “tensor product” operation. Variants of this construction are also studied, fo...

متن کامل

Picard Groups of Topologically Stable Poisson Structures

We compute the group of Morita self-equivalences (the Picard group) of a Poisson structure on an orientable surface, under the assumption that the degeneracies of the Poisson tensor are linear. The answer involves mapping class groups of surfaces, i.e., groups of isotopy classes of diffeomorphisms. We also show that the Picard group of these structures coincides with the group of outer Poisson ...

متن کامل

ar X iv : m at h - ph / 0 30 60 23 v 1 9 J un 2 00 3 Non - Archimedean Geometry and Physics on

This is a brief review article of various applications of non-Archimedean geometry, p-adic numbers and adeles in modern mathematical physics.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008